Signaling Cascades Governing Cdc42-Mediated Chondrogenic Differentiation and Mensenchymal Condensation.
نویسندگان
چکیده
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.
منابع مشابه
Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2.
High-density chick limb bud cell culture is a useful model to study mesenchymal condensatifons and chondrogenesis. Most previous studies have focused on the effects of soluble reagents on terminal chondrogenic differentiation and have not defined the early cellular processes and signaling events. In this study, we defined five successive stages in the differentiation process: 1) dissociated cel...
متن کاملFunctional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells
Growth/Differentiation Factor 5 (GDF5) plays an important role in limb mesenchymal cell condensation and chondrogenesis. Here we demonstrate, using high density cultures of chick embryonic limb mesenchyme, that GDF5 misexpression increased condensation of chondroprogenitor cells and enhanced chondrogenic differentiation. These effects were observed in the absence of altered cellular viability o...
متن کاملExtracellular ATP signaling via P2X(4) receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation.
Prechondrogenic condensation is the most critical process in skeletal patterning. A previous study demonstrated that ATP oscillations driven by Ca(2+) oscillations play a critical role in prechondrogenic condensation by inducing oscillatory secretion. However, it remains unknown what mechanisms initiate the Ca(2+)-driven ATP oscillations, mediate the link between Ca(2+) and ATP oscillations, an...
متن کاملMicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9
Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regul...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 202 3 شماره
صفحات -
تاریخ انتشار 2016